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The linear stability analysis of hypersonic flow over a sharp slender cone with an
attached shock is described. Attention is focused on the viscous modes of instability
which may be described by a triple-deck structure. The situation in which both the
effect of the shock and the influence of curvature are important is considered in the
weak-interaction region. Both neutral and non-neutral solutions are presented for
both axisymmetric and non-axisymmetric disturbances. The results obtained suggest
that the effect of curvature on the stability of hypersonic flow is significant when the
attached shock is taken into account.

1. Introduction
The recent interest in developing high-speed aircraft has increased the need to

understand hypersonic flow and in particular the effect of shocks. Significant progress
has been made in the study of hydrodynamic stability of boundary layers at hypersonic
speeds. Smith (1989) showed that the stability of such a boundary layer to viscous
modes may be described by a triple-deck structure and within this framework Cowley
& Hall (1990, hereafter referred to as CH), considered the effect of an attached shock
on the stability of the hypersonic flow over a wedge. They showed that the shock
can have a significant effect on the growth rates of Tollmien–Schlichting waves and,
crucially, the presence of the shock was found to allow an infinite number of unstable
modes: a situation which is unable to arise in the absence of the shock.

Concurrent with CH, Smith & Brown (1990) investigated both forms of inviscid
modes (i.e. the so-called acoustic and vorticity types) that may arise in a shock-free
compressible boundary layer. For large values of the Mach number the vorticity
mode is located at the edge of the boundary layer and is faster growing than the
acoustic modes. The neutral curves corresponding to the two modes were delim-
ited and it was shown that as the Mach number increases so the neutral curves
become close. This near-linking of the neutral modes was investigated analytically
and it was demonstrated that the separation distance between them actually be-
comes exponentially small with Mach number. (A similar near-linking is detailed
by Dando & Seddougui (1993) for unstable inviscid Görtler vortices in compressible
boundary layers over a curved plate.)

The study of CH was continued by Blackaby, Cowley & Hall (1993) to consider the

† Permanent address (for correspondence): School of Mathematics and Statistics, University of
Birmingham, Birmingham, B15 2TT, UK.



384 S. O. Seddougui and A. P. Bassom

strong-interaction zone, near the leading edge, as well as the region far downstream
for hypersonic flow over a flat plate. In the latter region the attached shock has no
effect, whereas it has an indirect effect near the leading edge because its presence
leads to a modification of the basic flow. This investigation concentrated on inviscid
modes of instability and assumed Sutherland’s viscosity law. A significant outcome of
this work was the demonstration that previous studies based on Chapman’s viscosity
law had overestimated the growth rate of unstable vorticity modes.

The present study addresses the question of the stability of hypersonic flow over
a slender cone when the attached shock and also the effects of curvature are taken
into account. Although viscous modes may not always prove to constitute the fastest
growing modes, they will often nonetheless be important. An instance of this signif-
icance arises should the disturbance be triggered by wall roughness. The instability
of the boundary layer on a cone to viscous modes may be described by a triple-deck
structure in a similar way to that described by Duck & Hall (1989, 1990, hereafter
referred to as DH1 and DH2) respectively. These articles considered the stability
of supersonic flow over axisymmetric bodies to axisymmetric and non-axisymmetric
disturbances. Curvature effects are unimportant unless the radius at the point of
interest is much larger than the boundary layer thickness (see Duck 1984). When
curvature effects are significant, the results of DH1 and DH2 show that the neutral
curves bear no resemblance to those in the absence of curvature. These results may
easily be generalized for hypersonic flows and the details of this aspect are given. It is
noted that the axisymmetric modes actually form a distinguished family of modes, for
in this eventuality the Mach number can be completely scaled out from the relevant
stability equations.

The inviscid stability analysis for axisymmetric disturbances to supersonic flow
along a circular cylinder considered by Duck (1990) showed that the effect of curvature
was stabilizing. This study was extended by Duck & Shaw (1990) to consider non-
axisymmetric disturbances to the flow over a sharp cone. They considered temporal
growth rates of inviscid modes and identified an additional mode of instability which
may be the most unstable. Asymptotic analysis presented in the limit of small or
large distances downstream for disturbances with small wavenumbers indicates a link
between this additional mode and the non-axisymmetric viscous mode described by
DH2.

The stability of the laminar boundary layer over a sharp cone has been investigated
experimentally by Stetson et al. (1983) for Mach 8 flow past a 7◦ half-angle cone.
Disturbance amplification rates were measured and a stability diagram obtained
which indicates the existence of multiple unstable regions in a hypersonic boundary
layer. The experimental results of Fischer & Weinstein (1972) on a 2.87◦ half-angle
cone with small nose radius at a Mach number of 18 revealed a wavy appearance
of the boundary layer edge. The authors suggest that this instability could lead to
transition to turbulence. The schlieren photographs presented show that the shock
occurred far outside the boundary-layer region at this downstream location. Thus,
this situation is not relevant to the present investigation where the shock is taken to
be at the edge of the boundary layer.

Following the work of CH, Chang, Malik & Hussaini (1990) investigated the effects
of a shock on the stability of hypersonic boundary layers on a wedge and a cone.
A parallel-flow approach was used and computed growth rates were compared with
those observed by Stetson et al. (1983). The authors concluded that the effect of the
shock is not significant when it is located outside the edge of the boundary layer,
and has a stabilizing influence when it is located near the edge of the boundary layer.
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More recently, Pruett & Chang (1995) have conducted a direct numerical simulation
of the experiments of Stetson et al. (1983). Here, however, the effect of any attached
shock was neglected and instead attention was focused on the properties of three-
dimensional second-mode waves.

The stability of the supersonic boundary layer on a rotating cone was investigated
numerically by Balakumar & Reed (1991). They invoked Mangler’s transformation
(see for example, Stewartson 1964); this transformation has the effect of reducing
the governing equations for an axisymmetric flow to the planar form. This work was
primarily concerned with describing the effect of the three-dimensionality of the basic
flow on its subsequent stability characteristics.

The influence of free-stream disturbances on a shock attached to a sharp cone has
been investigated by Duck, Lasseigne & Hussaini (1995). Their analysis considered
the whole region from the tip of the cone to distances far downstream, as opposed
to the local analysis employed in the present paper. Here, in §2, the basic hypersonic
flow over a sharp cone is described and, importantly, the conditions which must
be satisfied at the shock are discussed. The linear stability of this basic flow is
investigated in §3 following the triple-deck formulation used by CH, DH1 and DH2
for non-axisymmetric disturbances. Dispersion relationships for both axisymmetric
and non-axisymmetric disturbances are derived in §4; in §5 neutral modes are obtained
by numerical solution of these eigenrelations. These computations reveal that the
behaviours of the neutral curves take on special forms if the shock is either far away
from or close to the cone surface. We derive some asymptotic results for these two
cases in §6 and show that there is good agreement between these and the numerical
results obtained in §5.

Although neutral modes are of interest, in an experimental setting non-neutral
disturbances are important. In the remainder of the article we discuss some properties
of non-neutral modes, both axisymmetric and non-axisymmetric types. In §7 we
concentrate on the question of temporal instabilities whilst in §8 attention is focused
on the spatial problem. Finally, in §9, we draw a few conclusions.

2. Formulation
The flow of a compressible viscous fluid over a sharp cone of semi-angle θc is

considered at hypersonic speeds, with magnitude U0 parallel to its axis. We consider
an attached shock which makes an angle θs with the cone; a situation which is
illustrated in figure 1. Spherical polars (x, θ, φ) is the natural coordinate system in
which to describe the basic flow, and here φ denotes the azimuthal angle. Furthermore,
the radial distance x has been non-dimensionalized with respect to L∗, the distance
from the tip of the cone to the location under consideration.

If viscous effects are neglected the fluid velocities (u, v, w), pressure, p, and density,
ρ, satisfy the continuity and (inviscid) Euler equations, namely

∂ρ

∂t
+

1

x2 sin θ

[
∂

∂x
(x2 sin θ ρ u) +

∂

∂θ
(x sin θ ρ v) +

∂

∂φ
(xρw)

]
= 0, (2.1a)

ρ
Du

Dt
− ρ v2

x
− ρw2

x
= −∂p

∂x
, (2.1b)

ρ
Dv

Dt
+
ρ u v

x
− ρw2 cos θ

x sin θ
= −1

x

∂p

∂θ
, (2.1c)
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Figure 1. The geometry of the cone and shock. The cone is taken to be of semi-angle θc with
the attached shock making an angle θs with the surface of the cone. Our study is concerned with
the stability of the flow at a location distance L∗ along the cone surface; i.e. where x = 1. In the
triple-deck structure located at x = 1 the coordinate r (see below (2.10)) defines distance normal to
the cone surface. When x = 1 the cone radius a∗ (= sin θc) = aL∗ where the dimensionless radius

a = O(M−1/4Re−3/8µ
3/8
w T

9/8
w ), see §3.

ρ
Dw

Dt
+
ρw u

x
+
ρw v cos θ

x sin θ
= − 1

x sin θ

∂p

∂φ
, (2.1d)

ργ
D

Dt

(
p

ρ

)
= (γ − 1)

Dp

Dt
, (2.1e)

where
D

Dt
≡ ∂

∂t
+ u

∂

∂x
+
v

x

∂

∂θ
+

w

x sin θ

∂

∂φ
,

and γ = cp/cv is the ratio of specific heats of the fluid.
The velocities are non-dimensionalized with respect to U−, where U− is the mag-

nitude of the fluid velocity just behind the shock (see later). Throughout the paper,
subscripts + and − respectively denote quantities just ahead of and just behind
the shock. Additionally, the time t, p, and ρ, have been non-dimensionalized with
respect to L∗/U−, ρ−U

2
− and ρ− respectively, where ρ− is the density just behind the

shock. Finally, the basic temperature T has been non-dimensionalized by T−, the
temperature just behind the shock.

If ε ≡ ρ+/ρ−, the ratio between the fluid density just ahead of the shock and that
just behind it, is sufficiently small, then the density can be taken as constant in the
region between the shock and the cone. In this case the shock layer is thin, and the
viscosity µ may be taken as constant with µ = µ−.

The steady constant-density solution of (2.1) is well-known (e.g. Hayes & Probstein
1966) and is best given in the form of a velocity potential

Φ = x
U0

U−
[AP1(z) + BQ1(z)] , (2.2)

where P1 and Q1 are the Legendre functions

P1(z) = z and Q1(z) =
z

2
ln

(
1 + z

1− z

)
− 1.

Here z ≡ cos θ with u = ∂Φ/∂x and v = (1/x)∂Φ/∂θ. (Note that the flow is
axisymmetric so w = 0.) The constants A and B in the solution between the shock
and the cone are determined from the conditions at the shock which is located at
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θ = σ, where σ = θc + θs. The radial component of velocity is constant across the
shock and equals U0 cos σ/U− there whilst the polar component of velocity is normal
to the shock and satisfies v+ = ε−1v− = −U0 sin σ/U−. If the definition zs ≡ cos σ is
made, then these shock conditions can be used to determine A and B so that

A = ε+ (1− ε)zs(1− z2
s )Q

′
1(zs), (2.3a)

and

B = −(1− ε)zs(1− z2
s ), (2.3b)

where

Q′1(z) = Q0(z) +
z

1− z2
,

and Q0 is the Legendre function

Q0(z) =
1

2
ln

(
1 + z

1− z

)
.

Hence the solutions for u, v and p in the zone between the shock and the cone are

u = (U0/U−)(AP1(z) + BQ1(z)), (2.4a)

v = −(U0/U−)(1− z2)1/2(A+ BQ′1(z)), (2.4b)

and

U2
−

U2
0

p =
1

2γ
ε(1 + ε) sin2 σ

−
[
ABQ0(z) +

B2

2

(
Q2

0(z) +
1

1− z2

)
+
A2

2
− ε

2
(1− z2

s )−
z2
s

2

]
. (2.4c)

One significant feature of this solution is that the velocities are not uniform in the
region between the shock and the cone, which is in direct contrast to the corresponding
basic flow over a wedge. This has important consequences in the following analysis
but, somewhat fortuitously, it does not prevent progress being made.

The jump conditions at the shock determine the relationships between ρ+ and
ρ− and p+ and p−. These are given in Hayes & Probstein (1966) for any flow in
terms of the Mach number of the oncoming flow normal to the shock, Mn, where
Mn = U0v+/a+ with a+ denoting the speed of sound given by

a2
+ = γp+/ρ+ (2.5a)

and γ defined to be the ratio of specific heats of the fluid. If the Mach number M+

of the flow just ahead of the shock is set to be

M+ = U0/a+, (2.5b)

then this gives Mn = −M+ sin σ,

ε =

(
γ − 1

γ + 1

)(
1 +

2

(γ − 1)M2
+ sin2 σ

)
, (2.6a)

and

p−/p+ = 1 + γM2
+ sin2 σ(1− ε). (2.6b)

The magnitude of the fluid velocity just behind the shock is given by

U− = (U2
−u

2 +U2
−v

2)1/2 = U0 cos σ(1 + ε2 tan2 σ)1/2 (2.7)
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and this result can be used to determine the Mach number just behind the shock,
M−, as

M2
− =

M2
+ cos2 σ(1 + ε2 tan2 σ)

1 + 1
2
(γ − 1)(1− ε2)M2

+ sin2 σ
, (2.8a)

whilst

M2
+ =

M2
−

cos2 σ(1 + ε2 tan2 σ)− 1
2
(γ − 1)(1− ε2)M2

− sin2 σ
. (2.8b)

Furthermore, for the angle between the shock and the cone, tan θs = −v−/u−, i.e.

tan θs = ε tan σ. (2.9)

Expressions (2.5)–(2.9) are the same as those given by CH but since the basic flow is
not uniform now, they are only valid for quantities evaluated either just ahead of or
just behind the shock.

The solutions for the basic flow (2.4) are not valid close to the surface of the
cone and so a boundary-layer solution has to be introduced in this region. For the
purposes of analysing this layer we define the Reynolds number of the flow by

Re = ρ−U−L
∗/µ−. (2.10)

Since the angle of the cone is taken to be small and also the angle between the shock
and the cone must be small (see later) the flow between the shock and the cone satisfies
the continuity and Navier–Stokes equations in terms of non-dimensional coordinates
(x, r, φ) where x and φ are as defined previously and L∗r is the normal direction to
the cone surface, where r = a on the generator of the cone. Thus, neglecting terms of
O(θc), the equations satisfied by the corresponding non-dimensional velocities (u, v, w)
and the non-dimensionalized pressure and density p and ρ are

∂ρ

∂t
+

∂

∂x
(ρu) +

1

r

∂

∂r
(rρv) +

1

r

∂

∂φ
(ρw) = 0, (2.11a)

ρ
Du

Dt
= −∂p

∂x
+

1

Re

{
∂

∂x

[
2µ
∂u

∂x
+

(
µ′ − 2µ

3

)
∇ · u

]
+

1

r

∂

∂r

[
µr

(
∂v

∂x
+
∂u

∂r

)]
+

1

r

∂

∂φ

[
µ

(
1

r

∂u

∂φ
+
∂w

∂x

)]}
, (2.11b)

ρ

(
Dv

Dt
− w2

r

)
= −∂p

∂r
+

1

Re

{
∂

∂r

[
2µ
∂v

∂r
+

(
µ′ − 2µ

3

)
∇ · u

]
+

1

r

∂

∂φ

[
µ

(
1

r

∂v

∂φ
+
∂w

∂r
− w

r

)]
+
∂

∂x

[
µ

(
∂v

∂x
+
∂u

∂r

)]
+

2µ

r

(
∂v

∂r
− 1

r

∂w

∂φ
− v

r

)}
, (2.11c)

ρ

(
Dw

Dt
+
vw

r

)
= −1

r

∂p

∂φ
+

1

Re

{
1

r

∂

∂φ

[
2µ

r

∂w

∂φ
+

(
µ′ − 2µ

3

)
∇ · u

]
+
∂

∂x

[
µ

(
1

r

∂u

∂φ
+
∂w

∂x

)]
+
∂

∂r

[
µ

(
1

r

∂v

∂φ
+
∂w

∂r
− w

r

)]
+

2µ

r

(
1

r

∂v

∂φ
+
∂w

∂r
− w

r

)}
, (2.11d)
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where

D

Dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂r
+
w

r

∂

∂φ

and

∇ · u ≡ ∂u

∂x
+

1

r

∂

∂r
(rv) +

1

r

∂w

∂φ
,

where the viscosities, µ and µ′, have been non-dimensionalized with respect to µ−.
The equation for the temperature T−T is

ρ
DT

Dt
= (γ − 1)M2

−
Dp

Dt
+

1

PrRe

[
∂

∂x

(
µ
∂T

∂x

)
+

1

r

∂

∂r

(
rµ
∂T

∂r

)
+

1

r2

∂

∂φ

(
µ
∂T

∂φ

)]
+

(γ − 1)M2
−

Re
ΦT , (2.11e)

where

ΦT ≡ 2µ

[(
∂u

∂x

)2

+

(
∂v

∂r

)2

+

(
1

r

∂w

∂φ
+
v

r

)2

+
1

2

(
∂u

∂φ
+
∂w

∂x

)2

+
1

2

(
∂v

∂x
+
∂u

∂r

)2

+
1

2

(
1

r

∂v

∂φ
+
∂w

∂r
− w

r

)2
]

+

(
µ′ − 2µ

3

)
(∇ · u)2 ,

M2
− = U2

−/((γ − 1)cpT−), and Pr is the Prandtl number. If the fluid is assumed to be
a perfect gas then the equation of state becomes

γM2
−p = ρT . (2.11 f )

The relevant boundary conditions are u = v = w = 0 and T = Tw at the surface of
the cone, together with appropriate conditions at the shock location (see later) given
by r = rs, say.

In the following analysis it is found that we do not need to be precise about the
boundary condition for the temperature at the surface of the cone; the only restriction
that must be imposed is that Tw � 1. This will be the case for an adiabatic wall,
where there is no heat transfer at the surface, as well as for an isothermal wall for
which the temperature of the surface is maintained at a prescribed constant value. The
only circumstance when the assumption Tw � 1 is no longer valid arises when strong
cooling is applied to the cone surface. Studies of the effects of severe cooling include
those by Seddougui, Bowles & Smith (1991) for general compressible flows and inves-
tigations by Brown, Cheng & Lee (1990) and Kerimbekov, Ruban & Walker (1994)
for hypersonic flows. Hereafter we shall suppose that Tw = TbTr where Tr is the
adiabatic wall temperature given by Tr = 1 + (γ − 1)M2/2 where M− ≡M.

It is noteworthy that the subsequent analysis in the current paper is unaffected by
the choice of the underlying viscosity law relating the fluid viscosity to its temperature.
In their study CH derived restrictions on the various parameters in their problem
in order to ensure that the analysis is valid if Chapman’s law or the more accurate
Sutherland’s law is assumed. These restrictions arise from the constraints that the
shock should lie within the upper tier of the governing triple-deck structure outlined
below and that the wavelength of the Tollmien–Schlichting waves is much less than
the distance from the apex of the cone. For Chapman’s law µw = CTw , our subsequent



390 S. O. Seddougui and A. P. Bassom

analysis is valid for

M ∼ σ8/7Re3/14, Re−1/10 6 σ 6 Re−1/122, (2.12a)

whilst for Sutherland’s relation µw ∼ (1 + C)T
1/2
w we require

M ∼ σ13/14Re3/14, Re−1/9 6 σ 6 Re−1/107; (2.12b)

these inequalities also ensure that the lower-deck analysis will be linear. Finally, the
precise value of the Prandtl number taken in our work is not significant. However,
it should be cautioned that the investigation of Grubin & Trigub (1993) revealed the
importance of the values of Pr and ω for the long-wave limit of inviscid modes, where
ω is the exponent in the viscosity power law µw ∝ Tω

w . Thus, in order to connect our
results for viscous modes to other disturbance types in an appropriate limit, it may
be important to assign values to Pr and ω.

3. The stability problem
The linear stability of the basic flow described above for M � 1 and Re � 1 is

investigated in the weak-interaction region following the triple-deck formulation used
by CH, DH1 and DH2. The conditions to be satisfied at the shock by a disturbance to
this basic flow must be specified and these are derived in detail by Seddougui (1994).
The requisite constraints were obtained by considering the linearized jump conditions
at the shock for infinitesimal waves beneath the shock; a similar procedure was
adopted by CH for flow over a wedge. Although the basic flow is not uniform in the
regions below and above the shock, Seddougui (1994) showed that the jump conditions
may still be evaluated at the undisturbed position of the shock. Furthermore, the
linear waves between the shock and the cone have different forms than those for a
wedge. The condition satisfied by the pressure amplitudes of the two acoustic waves
(which are incident and reflected from the shock) is found to be similar to that
obtained by CH.

Attention is focused at a location on the surface of the cone with non-dimensional
radius a = a∗/L∗. It is assumed that aRe3/8M1/4µ

−3/8
w T

−9/8
w ∼ O(1) denotes the scale

of the radius at this point; thus we have chosen sin θc ∼ θc ∼ Re−3/8M−1/4µ
3/8
w T

9/8
w .

Our study is confined to the question of the stability of the flow at a location on
the body where the boundary-layer thickness is O(Re−1/2L∗), which is thin compared
to the local radius of the cone. This situation is chosen so that curvature effects are
significant. The analysis is somewhat simplified if non-parallel effects can be neglected
and CH showed that this is justifiable if the ‘Newtonian’ assumption γ − 1 � 1 is
made. Thus, for simplicity, this condition is taken to hold in the following analysis
although it can be easily relaxed for more involved studies.

It is convenient to scale out some of the parameters in the problem, namely µw , Tw
and λ, where the last quantity denotes the boundary-layer skin friction and throughout
the subscript w is used to denote values at the surface of the cone. Following CH we
introduce the scales

x = 1 + Re−3/8µ3/8
w λ−5/4T 9/8

w M3/4X, a = Re−3/8µ3/8
w λ−5/4T 9/8

w M−1/4a,

t = Re−1/4µ1/4
w λ−3/2T 3/4

w M1/2τ.

}
(3.1)

In the lower tier of the triple-deck structure, where viscous effects are important,
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we have

r − a = Re−5/8µ5/8
w λ−3/4T 7/8

w M1/4Y , u ∼ Re−1/8µ1/8
w λ1/4T 3/8

w M1/4U,

v ∼ Re−3/8µ3/8
w λ3/4T 1/8

w M−1/4V , w ∼ Re−1/8µ1/8
w λ1/4T 3/8

w M−3/4W,

p ∼ γ−1M−2 + Re−1/4µ
1/4
w λ1/2T

−1/4
w M−3/2P , T ∼ Tw, ρ ∼ T−1

w .

 (3.2)

Substituting these expressions into the non-dimensionalized continuity and Navier–
Stokes equations gives, at leading order

UX + VY + (1/a)Wφ = 0, PY = 0,

Uτ +UUX + VUY + (W/a)Uφ = UYY ,

Wτ +UWX + VWY + (W/a)Wφ = −(1/a)Pφ +WYY .

 (3.3)

Note that there is no PX term in the X-momentum equation and this is a consequence
of our examining the hypersonic limit. The necessary boundary conditions are

U = V = W = 0 on Y = 0, (3.4a)

U → Y + A(X,φ, τ), W → D/Y as Y →∞, (3.4b)

where A is a displacement function and D satisfies DX = −Pφ/a.
The solutions of the above equations must match with those in the main deck as

Y →∞. Owing to the presence of the temperature adjustment layer (a logarithmically
small layer required to reduce the temperature of the basic flow from its O(M2) value
close to the surface to its O(1) value at the edge of the boundary layer) the main
deck is itself sub-divided into three further regions. The details of these sub-regions
follow those of CH so, for the sake of brevity, will not be repeated here. In the
boundary-layer region where the basic temperature T ≡ γM2p/ρ (from the perfect
gas relation (2.11f )) is large, the scalings and solutions are

r − a = Re−1/2µ1/2
w T 1/2

w y, u ∼ U0(y) + Re−1/8µ1/8
w λ−3/4T 3/8

w M1/4AU0y,

v ∼ −Re−1/4µ1/4
w λ1/2T−1/4

w M−1/2AXU0, w ∼ Re−1/4µ1/4
w λ1/2T−1/4

w M−1/2D/(U0R0),

p ∼ Re−1/4µ1/4
w λ1/2T−1/4

w M−3/2P , ρ ∼ R0(y) + Re−1/8µ1/8
w λ−3/4T 3/8

w M1/4AR0y,


(3.5)

where U0 and R0 are the non-dimensional velocity and density, respectively, of the
basic flow.

In order that the effect of the shock may be considered the scalings are chosen so
that the shock occurs in the upper deck of the triple-deck structure. This requires
that θs ∼ θc ∼ Re3/16M−23/8 for Chapman’s viscosity law, or θs ∼ Re3/13M−40/13 for
Sutherland’s law. The scalings here are

r = Re−3/8µ3/8
w λ−5/4T 9/8

w M−1/4r, u ∼ 1 + Re−1/4µ1/4
w λ1/2T−1/4

w M−3/2ũ,

v ∼ Re−1/4µ1/4
w λ1/2T−1/4

w M−1/2ṽ, w ∼ Re−1/4µ1/4
w λ1/2T−1/4

w M−1/2w̃,

p ∼ Re−1/4µ1/4
w λ1/2T−1/4

w M−3/2p̃, ρ ∼ 1 + Re−1/4µ1/4
w λ1/2T−1/4

w M1/2ρ̃.

 (3.6)

Substitution of these expressions into the governing disturbance equations yields

∂ρ̃

∂X
+
∂ṽ

∂r
+
ṽ

r
+

1

r

∂w̃

∂φ
= 0,

∂ũ

∂X
= − ∂p̃

∂X
,

∂ṽ

∂X
= −∂p̃

∂r
,

∂w̃

∂X
= −1

r

∂p̃

∂φ
,

∂p̃

∂X
=
∂ρ̃

∂X
,

 (3.7)
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where the effect of curvature is now apparent. Eliminating ṽ and w̃ from the first of
(3.7) gives

∂2p̃

∂r2
+

1

r

∂p̃

∂r
+

1

r2

∂2p̃

∂φ2
− ∂2p̃

∂X2
= 0. (3.8)

From matching with the main deck, the boundary conditions are p̃r = AXX and
p̃ = P at r = a. The remaining boundary condition is applied at the shock. For the
scales presented here (appropriate to acoustic waves) Seddougui (1994) has shown
that the requisite constraint is that p̃ = 0 at the shock location, defined by r = rs.

In order to analyse the linear stability of the above system of equations we consider
perturbations proportional to E = exp[i(αX + nφ − Ωτ)] where n is an integer > 0.
The linearized equations in the lower deck may be solved giving the solutions for the
perturbations in terms of the Airy function Ai (see Abramowitz & Stegun 1964). In
the upper deck, where we define p̃ = p̂(r)E, the function p̂ satisfies the modified Bessel
equation of order n, namely

d2p̂

dr2
+

1

r

dp̂

dr
− n2

r2
p̂+ α2p̂ = 0. (3.9)

The boundary conditions at r = a are now p̂r = −α2Â and p̂ = P̂ , where (A, P ) =
(Â, P̂ )E and p̂ = 0 at r = rs. Matching the upper-deck solutions of (3.9) to the
lower-deck quantities leads to the desired eigenrelations, an operation we consider
now.

4. Dispersion relations for axisymmetric and non-axisymmetric modes
The case of axisymmetric disturbances must be considered separately from the

non-symmetric ones, as in the former case the Mach number can be completely
scaled out of the linear stability problem. Thus, the Mach number scales presented in
the previous section are only strictly appropriate to non-axisymmetric disturbances.

For axisymmetric disturbances the pressure perturbation in the upper deck satisfies
(3.9) with n = 0, although r, p̂ and Â are scaled differently with respect to M to the
variables defined in §3 (in fact, they have factors of powers of M2 − 1). The solution
for p̂, say p̂A, in this case is

p̂A(r) = iαÂ
I0(iαrs)K0(iαr)− I0(iαr)K0(iαrs)

I0(iαrs)K
′
0(iαa)− I ′0(iαa)K0(iαrs)

, (4.1)

where K0(iαr) and I0(iαr) are the usual modified Bessel functions. In the lower deck,
satisfying the boundary condition for the disturbance along the cone as Y → ∞ and
at Y = 0 yields the condition

Ai′(ξ0)∫ ∞
ξ0

Ai(ξ)dξ

= (iα)1/3 P̂

Â
, (4.2)

where ξ = ξ0 +(iα)1/3Y and ξ0 = −i1/3Ωα−2/3. Hence, applying the condition p̂(a) = P̂
yields an eigenrelation relating the streamwise wavenumber α and frequency Ω, namely

Ai′(ξ0)∫ ∞
ξ0

Ai(ξ)dξ

= −(iα)4/3 I0(iαrs)K0(iαa)− I0(iαa)K0(iαrs)

I0(iαrs)K1(iαa) + I1(iαa)K0(iαrs)
. (4.3)
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Before discussing some solutions of (4.3) it is useful to consider the corresponding
eigenrelation obtained by DH1 in the absence of a shock. This is because inspection
of (4.3) as rs → ∞ reveals that, in the case of neutral modes, the eigenrelation does
not tend to that obtained by DH1, as one might expect. If no shock is present
then the solution of (3.9) with n = 0 is proportional to K0(iαr), allowing only for
outgoing waves as r →∞. The requisite details are given in DH1 and the appropriate
eigenrelation has the form

Ai′(ξ0)∫ ∞
ξ0

Ai(ξ)dξ

= −(iα)4/3K0(iαa)

K1(iαa)
, (4.4)

where λ has been scaled out in the manner described in §3.

4.1. Non-axisymmetric modes

For n > 0 we find that the appropriate solution of (3.9) is given by

p̂(r) = −iαÂ
In(iαrs)Kn(iαr)− In(iαr)Kn(iαrs)

I ′n(iαa)Kn(iαrs)− In(iαrs)K ′n(iαa)
. (4.5)

The condition to be satisfied by P̂ from the lower-deck solution is now

Ai′(ξ0)∫ ∞
ξ0

Ai(ξ)dξ

= (iα)−2/3 in2

αa2

P̂

Â
(4.6)

and thus setting p̂(a) = P̂ yields the eigenrelation

Ai′(ξ0)∫ ∞
ξ0

Ai(ξ)dξ

= (iα)4/3 n2

α2a2

In(iαrs)Kn(iαa)− In(iαa)Kn(iαrs)

In(iαrs)K ′n(iαa)− I ′n(iαa)Kn(iαrs)
. (4.7)

As in the axisymmetric case discussed above, eigenrelation (4.7), when solved for
neutral disturbances as rs → ∞, does not collapse to the hypersonic limit of DH2 in
the absence of a shock. If no shock is present the corresponding eigenrelation is

Ai′(ξ0)∫ ∞
ξ0

Ai(ξ)dξ

= (iα)4/3 n2

α2a2

Kn(iαa)

K ′n(iαa)
(4.8)

and the solution of (4.8) is shown in figure 2 for neutral values α = α(a) for n = 1–4.
For any prescribed azimuthal wavenumber n, modes lying in the parameter space to
the left of the corresponding neutral curve are unstable whilst those to the right are
stable. This would seem to suggest that the instability region grows with n and so
there is no sensible definition of the most dangerous mode. However, this view of
the relative importances of the various modes disregards the size of the growth rates
of the disturbances. In practice, it is reasonable to suppose that the significance of a
particular mode is closely allied to its growth rate and we shall compute a selection
of such amplification values later.

The form of solutions for Ω corresponding to neutral modes is very similar to those
presented for α and the asymptotic behaviour of (4.8) for a� 1 is derived in §6.1. We
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Figure 2. Neutral non-axisymmetric modes as given by solution of (4.8) for flow over the cone in
the absence of the shock. Shown are the modes with azimuthal wavenumbers n = 1–4.

note that in the limit |αa| � 1 and n� 1, for α2a2 < n2 the eigenrelation reduces to

1.001

(
1− α2a2

n2

)1/2

≈ α1/3 n

a

and taking this limit corresponds to lessening the influence of curvature. Indeed, if we
now write β = n/a then we retrieve the hypersonic planar relation of Smith (1989)
which governs the stability of viscous flow over a flat plate. However, if the presence
of the shock is taken into account, the situation is very different.

5. Neutral modes
We now consider neutrally stable solutions of dispersion relations (4.3) and (4.7)

corresponding to the axisymmetric and non-axisymmetric cases respectively. As in the
preceding section, we shall start by examining the axisymmetric relationship (4.3). The
presence of the shock allows for multiple modes of solutions and it is convenient to
write the modified Bessel functions in terms of Jn and Yn. Thus (4.3) may be written
as

Ai′(ξ0)∫ ∞
ξ0

Ai(ξ)dξ

= i1/3α4/3 J0(αrs)Y0(αa)− J0(αa)Y0(αrs)

J0(αrs)Y1(αa)− J1(αa)Y0(αrs)
. (5.1)

Real values of α corresponding to the first ten modes satisfying (5.1) are shown in
figure 3 with the shock location chosen at rs = 1. In this figure the region of instability
lies above the curves and, for larger values of a, α increases monotonically with a;
see figure 4 which illustrates this phenomenon for the first four modes. These neutral
curves differ fundamentally from those obtained from (4.4) by DH1, where solutions
are only possible for a finite range of a with a less than approximately 0.003. In that
shockless problem when a→ 0 the neutral solutions of (4.4) have α (and Ω) tending
to infinity for both the lower and upper branches: the precise asymptotic expressions
are detailed in DH1. In the present case it appears that neutral solutions are possible
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Figure 3. The first ten axisymmetric neutral modes giving the wavenumber α in terms of the local
cone radius 0 < a < 0.001 for shock position rs = 1. Shown dashed are the small-a asymptotic
results as given by (6.2).
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Figure 4. The first four axisymmetric neutral modes for rs = 1 and cone radius 0 < a < 1. Shown
dashed are the a→ rs asymptotic results (6.9).
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Figure 5. Neutral values of the frequency Ω for the first five axisymmetric modes with rs = 4 and
0 < a < 4. The a→ rs asymptotic results (6.8) and (6.9) (with Ω ≈ 2.297α2/3) are superimposed.

for all physically sensible values of a. (The upper limit on a, that is rs, must be
imposed or else we are in the absurd situation when the shock would lie inside the
cone.) With the shock present we see from figure 3 that α no longer grows indefinitely
in the limit of zero cone radius as in DH1, but instead the neutral values tend to O(1)
constants in this limit. Thus it appears that the stability of the flow over the cone
to axisymmetric disturbances is significantly altered by the presence of the shock but
figure 3 does contain a remnant of the neutral curve obtained by DH1. The kinking
feature which develops in the higher modes of figure 3 at small values of a delimits
a mode very reminiscent of the type identified by DH1; a brief justification of this
assertion appears within our asymptotic analysis of §6.

For neutral solutions of (5.1), as in the classic planar incompressible stability
problem, it is found that ξ0 ≈ −2.297i1/3 giving Ω ≈ 2.297α2/3. Thus, the neutral
curves in Ω-space have similar behaviours to those for α. To take an example, neutral
values of Ω are shown in figure 5 for the first five modes associated with the shock
position rs = 4. Figure 6(a ,b) shows neutral curves of α from (5.1) for rs = 4 and
rs = 16, respectively, for the first five modes. Although not obvious from this figure,
refined calculations for small a prove that the kinks evident in figure 3 continue to
exist for the higher modes at these larger values of rs. We see that as the shock
moves away from the boundary layer, for fixed values of a, the neutral values of α
decrease. Thus, the shock appears to have a destabilizing effect since its distance from
the surface increases as the area above the neutral curves is increased and growing
solutions will be possible for a larger range of a. Finally, also shown on figures 3–6
are the asymptotic results described in §6 for the particular limits a→ 0 and a→ rs.
The agreement is remarkably good in all cases.
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Figure 6. The first five axisymmetric neutral modes giving α as a function of a for 0 < a < rs with
(a) rs = 4; (b) rs = 16. The a→ rs asymptotic results (6.8) and (6.9) are indicated by broken lines.

5.1. Neutral non-axisymmetric disturbances

As in the axisymmetric case it is convenient to write the eigenrelation (4.7) in terms
of Jn and Yn so that

Ai′(ξ0)∫ ∞
ξ0

Ai(ξ)dξ

= i1/3α4/3 n2

α2a2

Jn(αa)Yn(αrs)− Jn(αrs)Yn(αa)
Jn(αrs)Y ′n (αa)− J ′n(αa)Yn(αrs)

. (5.2)

Neutral solutions of (5.2) are shown in figure 7(a ,b) for n = 1 and rs = 1 and rs = 4,
respectively, and a number of remarks should be made concerning the forms of these
curves. The first is that, unlike the axisymmetric case, there are no kinks on the curves
for small values of a for higher modes. For small values of a, with the exception of the
first mode, the neutral value of α tends to a non-zero constant, as in the axisymmetric
case, although for rs = 1 the minimum value now occurs as a→ 0 (cf. figure 4 which
clearly shows that in the axisymmetric problem the minimum value of α corresponds
to a non-zero body radius). The first mode on figure 7(a ,b) has α tending to zero
as a → 0 which corresponds to the solutions in the absence of a shock (see figure
2). The asymptotic behaviour for a → rs is the same for all modes and is described
in §6.2, with the corresponding behaviour for a → 0 given in §6.1. The asymptotic
results shown on figure 7 illustrate a very close agreement with the computed results.
For larger values of rs the neutral curves all move closer to the a-axis for fixed n, as
illustrated by figure 7(b). Further calculations show that the asymptotic expressions
of §6.2 continue to give excellent agreement for larger values of rs and n. Figure 8
gives the solution for α with n = 2 and rs = 1. We find that as n increases for fixed
rs the solutions do not alter significantly, particularly as a→ rs. However, it is worth
noting that for the first-mode solution the neutral values of α decrease as n increases:
the significance of this is discussed in DH2. Figure 9 shows neutral values of α for
rs = 16 and n = 1 and n = 2 but in order to illustrate the behaviour of the solution
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Figure 7. The first five neutral modes with azimuthal wavenumber n = 1. Shown is α against a for
0 < a < rs and (a) rs = 1; (b) rs = 4. The small a and a→ rs asymptotes as given by (6.4) and (6.10)
are also indicated. Note that the a→ rs asymptotes in (b) are indistinguishable from the computed
solutions.
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Figure 8. The first five neutral modes with azimuthal wavenumber n = 2 and shock location
rs = 1.

curves for small a the results shown are restricted to a 6 10. For small values of a
the first-mode solution does not feel the influence of the shock and has a behaviour
similar to the solutions of (4.8) (see figure 2). However, as a increases so the shock
has an increasingly dramatic effect on the solution.
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Figure 9. The first five neutral modes with azimuthal wavenumbers (a) n = 1; (b) n = 2. The shock
is located at rs = 16 and, in order to clarify the solution behaviours for small a, the horizontal axis
is restricted to 0 < a < 10. We remark that the a → rs asymptotes are very accurate for a greater
than about 8.

6. Asymptotic solutions of the eigenrelations
Before discussing some non-neutral solutions of the dispersion relations, it is useful

to consider some asymptotic solutions of (5.1) and (5.2) in the limits of small a and
large a.

6.1. Limit as a→ 0.

As a → 0 (with the exception of the first mode for n > 0) the numerical results
suggest that α and Ω tend to non-zero constants. This can be confirmed analytically
as follows. Examination of the structures of the respective eigenrelations (5.1) and
(5.2) in terms of Jn and Yn, suggests that if αa � 1 then the Yn terms are likely to
dominate the Jn ones. In order to check this, we approximate the left-hand sides of
(5.1) and (5.2) by 1.001i1/3 so that we anticipate the result that ξ0 ≈ 2.297i1/3 as in
the classical work. On substitution of the series expansions of Jn and Yn into the
approximate eigenrelations, with α = α0 + apα1 + · · · and p to be fixed, we find that to
achieve the required balance as a → 0, α0 must satisfy Jn(α0rs) = 0, n > 0. Balancing
higher-order corrections leads to the conclusion that for n = 0 then

α = α00 + aα10 + · · · , (6.1)

where α00 and α10 are given by

J0(α00rs) = 0 and α10rs = −α
7/3
00 πY0(α00rs)

2.002J1(α00rs)
. (6.2)

Meanwhile, for n > 0 the appropriate solution is

α = α0n + a2nα1n + · · · , (6.3)
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where α0n and α1n satisfy

Jn(α0nrs) = 0 and α1nrs = − α2n
0nπYn(α0nrs)

4nn!(n− 1)!J ′n(α0nrs)
. (6.4)

These asymptotic predictions are illustrated in figure 3 and figures 7–9 and they are
seen to be in remarkably good agreement with the numerical solutions. Indeed, results
(6.1)–(6.4) encapsulate the small-body-radius limit of all the computed modes with
the exception of the first mode in the n 6= 0 case for which we have already noted
that α→ 0 as a→ 0. When n > 0 this additional solution can be isolated as follows.
As αrs � 1, the eigenrelation (5.2) becomes, at leading order,

1.001 ≈ n2

a2α2/3

αa

n
=
nα1/3

a
,

so that

α ∼
(
1.001a/n

)3
and Ω ∼ 2.297

(
1.001a/n

)2
. (6.5)

Note that these leading-order terms are independent of rs. In fact, this is the behaviour
governing the first neutral solution of (4.8) and also those described by DH2. Thus, as
rs → ∞ this structure persists; however as a increases the solution curve for this first
mode quickly reverts to having the behaviour similar to that of the higher modes. This
phenomenon is immediately apparent in figure 9 where this behaviour also appears
to some extent in the higher modes.

In connection with figure 3 and our numerical solution of the axisymmetric eigen-
relation (5.1) we asserted that the kinking feature which appears in the higher modes
delimits the small-a solutions found by DH1. That this is the case is easiest to observe
if the shockless relation (4.4) is rewritten in the alternative form

Ai′(ξ0)∫ ∞
ξ0

Ai(ξ)dξ

= i1/3α4/3Y0(αa) + iJ0(αa)

Y1(αa) + iJ1(αa)
. (6.6)

Now DH1 showed that as a→ 0 so solutions of this equation satisfy α→∞, aα→ 0.
Using the well-known small-argument forms

J0(δ) ∼ 1 + O(δ2), J1(δ) ∼ 1
2
δ + . . . , Y0(δ) ∼ 2

π
ln( 1

2
δ) + . . . , Y1(δ) ∼ − 2

πδ
+ . . . ,

(6.7)

as a → 0 the right-hand side of (6.6) tends to i1/3α4/3Y0(αa)/Y1(αa). Meanwhile, in
conjunction with eigenrelation (5.1), we have that in the same limit αrs → ∞ and as
J0(αrs) and Y0(αrs), although oscillatory, are bounded, so the second terms in both
the numerator and denominator of the right-hand side become much less than the
first ones (assuming J0(αrs) 6= 0). Consequently, the eigenrelations (5.1) and (6.6)
tend to the same form at leading order and hence the small-a solutions of DH1 are
approached. Of course, this argument relies on the assumption that J0(αrs) 6= 0: if
α happens to be such that αrs is close to a zero of J0 our analysis requires some
modification. This explains why the kinks of figure 3 identify the remnants of the
mode of DH1 but do not delimit the whole of their curve as our solutions veer away
around points near roots of J0(αrs) = 0.
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6.2. Limit as a→ rs.

Investigation of this case reveals that there are two possible asymptotic limits in
this situation which corresponds to the case in which the shock position nears the
surface of the cone. The first asymptotic structure tackles the case α(rs − a) � 1 in
the axisymmetric problem. Then, on expanding the Bessel functions in (5.1) in powers
of α(rs − a) we find that α is given by

α = (rs − a)−3/7 +
3

14rs
(rs − a)4/3 + · · · . (6.8)

This expression is found to agree extremely well with the first-mode solutions for the
axisymmetric problem for all values of rs, as illustrated in figures 5 and 6.

When α(rs − a) ∼ O(1), assuming αrs � 1 and αa � 1 another solution may be
obtained for α. Substituting the expansions of the Bessel functions in (5.1) and (5.2)
for large argument gives expressions for α in each case. For the axisymmetric problem
we find that

α =
mπ

rs − a
+

(rs − a)1/3

(mπ)4/3
+ · · · , (6.9)

for m = 1, 2, . . .. Thus, for m = 1, this expression corresponds to the second mode
and in general the choice m = m′ corresponds to the (m′ + 1)th mode. The agreement
is seen to be very close in figures 4–6. For the non-axisymmetric problem, similar
analysis reveals that

α =
(2m− 1)π

2(rs − a)
− n2(rs − a)−1/3

r2
s ((2m− 1) 1

2
π)2/3

+ · · · , (6.10)

for n > 0 and m = 1, 2, . . .. Here m = 1 corresponds to the first mode so that (6.10)
describes all the modes for a and rs large. The prediction given by (6.10) is shown in
figures 7–9 where the agreement is seen to be excellent. At leading order (6.10) gives
α independent of n; a feature that can be observed in the computed solutions for
a→ rs by, for example, comparing figures 7(a) and 8 or figures 9(a) and 9(b).

7. Temporal stability
Although neutral modes are of frequent theoretical concern, from a practical

viewpoint it is often worthwhile to examine growth rates of non-neutral disturbances.
In this section we consider the temporal evolution of viscous modes and, in §8, shall
direct attention to the equivalent spatial problem. Here we solved eigenrelations (4.3)
and (4.7) with α real and Ω complex; it is clear that as from the outset we have
sought modes proportional to exp[i(αX+nφ−Ωτ)] then if Ω = Ωr + iΩi we have that
Ωi < 0 corresponds to stability and Ωi > 0 instability.

We begin our account of temporal modes by initially focusing on the axisymmetric
case n = 0 and figure 10 illustrates the dependence of Ωi on the wavenumber α for
a selection of shock locations rs and local cone radii a. Figure 10(a ,b) shows that
for prescribed rs the growth rates of unstable modes tend to increase with α. The
fairly violent exchanges between regions of stability and instability are reminiscent
of the temporal-growth curves given in CH. They proved that these rapid changes
are associated with wavenumbers at which Ωr is discontinuous as a function of α
and switches between large positive and negative values. Our calculations reveal that
exactly the same phenomenon is at work in this hypersonic-cone flow. Figure 10(a ,c,d )
shows the effects on temporal growth rates of increasing rs whilst maintaining the
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Figure 10. The temporal growth rates Ωi for non-neutral axisymmetric modes plotted as functions
of the wavenumber α for a selection of shock positions rs and local cone radius a. In (a–d),
(rs, a) = (4, 1), (4, 3), (16, 4) and (32, 8) respectively.

ratio a/rs constant. Not surprisingly, as the distance between the shock and the cone
surface increases so the effect of the shock lessens and growth rates typically slightly
diminish. In addition, it is clear that as rs grows so the domains of wavenumber space
in which instability persists shrink. Indeed, when rs is large, figure 10(d ) suggests that
the overwhelming majority of wavenumbers are associated with stable waves and it
is only quite tiny wavenumber bands which are unstable.

Turning now to non-axisymmetric disturbances, in figure 11 we consider the tem-
poral characteristics of modes of azimuthal wavenumber n = 1. The two cases shown,
rs = 4 and a = 1, 3, illustrate some features which are distinct from the corresponding
axisymmetric calculations (see figure 10a ,b). Although there is no great change in the
amplification rates, it is noticeable that the n = 1 modes are unstable over a signifi-
cantly reduced proportion of wavenumber space. In particular, for rs = 4 and a = 3,
virtually all the possible modes lie within the stable domain and only a few selected
wavenumbers correspond to growing disturbances. These general comments concern-
ing the differences in the temporal rates between axisymmetric and non-axisymmetric
disturbances continue to hold for higher values of n. In figure 12(a ,b) we show the
respective curves for n = 2, rs = 4 and a = 1, 3; in particular the maxima in the
growth rates seem insensitive to n. Modes with n = 2, rs = 1 and a = 0.25, 0.75
are illustrated in figure 12(c,d ) and once more we remark as rs shrinks so a greater
proportion of wavenumber space is associated with growing modes but increases in
the cone radius a have the opposite effect.

One final comparison between figures 10, 11 and 12 which deserves comment
is the form of the unstable wavenumber bands as α increases. Non-axisymmetric
disturbances tend to exhibit shrinking of these intervals (see figures 11a or 12d for
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Figure 11. Temporal growth rates Ωi(α) for n = 1 non-axisymmetric modes with (a) (rs, a) = (4, 1)
and (b) (rs, a) = (4, 3).
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Figure 12. Temporal growth rates Ωi(α) for n = 2 modes and, in (a–d), (rs, a) = (4, 1), (4, 3),
(1, 0.25) and (1, 0.75) respectively.

example) but axisymmetric modes tend to show the opposite trend (a feature best
observed in figure 10d ).

8. Spatial stability computations
We now concern ourselves with an examination of the spatial evolution of dis-

turbances so that we concentrate on solutions of (4.3) and (4.7) with Ω real and α
complex. The reader is reminded that with α = αr + iαi then αi > 0 is indicative of
stability while αi < 0 denotes spatial instability.

Let us commence our discussion with the axisymmetric modes. Figure 13 shows
the dependence of the spatial growth-rate parameter αi on the mode frequency Ω for
a variety of shock positions rs and cone radii a = rs/4 and 3rs/4. For each pair (rs, a)
there is a complete family of modes, as we saw in our account of neutral disturbances,
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Figure 13. Spatial growth-rate parameters αi(Ω) for non-neutral axisymmetric modes. In (a–f) we
show the growth rates for the first few modes relating to the parameter choices (rs, a) = (1,0.25),
(1,0.75), (4,1), (4,3), (16,4) and (16,12) respectively.

and it is clear that for each member of the family there is a cut-off frequency Ωc
such that for Ω < Ωc that particular mode is stable but it becomes unstable if
Ω > Ωc. However, we also observe that the growth rate rapidly approaches zero at
high frequencies. Figure 13(a) shows the first four modes when rs = 1, a = 0.25 and
we immediately see that the most unstable of the modes is not the first one, as might
have been anticipated, but instead is the second. As a increases, see figure 13(b), the
first mode takes over as the most unstable one and we notice that the spatial growth
rates tend to increase. For larger rs and smallish cone radius a, see figure 13(c), it is
now the third mode which appears to be the most important but again, as the shock
moves further from the surface of the cone, it is hardly surprising that the computed
growth rates tend to fall. These trends can be summed up by: (i) amplification rates
grow as a→ rs; (ii) they diminish as rs grows and (iii) the index of the most unstable
mode rises with rs but falls with a. Further verification of these assertions is provided
by figure 13(d–f ).

Figure 14 summarizes the spatial amplification rates for the same choices of (rs, a)
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azimuthal wavenumber n = 1. In (a–f) the choices for rs and a are as given in figure 13.

as considered in figure 13, but with the important difference that the modes are non-
axisymmetric with azimuthal wavenumber n = 1. On contrasting figures 13(a) and
14(a) it is striking how the most unstable mode in the non-axisymmetric case is the
fourth one compared with the second one in the axisymmetric problem. Furthermore,
when n = 1 it appears that the overall spatial growth rates are enhanced and that
the difference in growth rates of adjacent modes is really quite small. If a is now
increased, see figure 14(b), the contrasts between the n = 0 and n = 1 solutions largely
disappear. In both cases, it is now the first mode which is the most unstable and the
corresponding growth rates are very similar indeed. The enhanced growth rates for
the n = 1 modes over their n = 0 counterparts for smallish rs is reversed once rs is
increased. Figure 14(c,d ) shows n = 1 modes associated with rs = 4, a = 1 and 3, cf.
figure 13(c,d ). At the smaller value of a the amplification rates of the axisymmetric
modes are slightly the greater but by the time a = 3 the difference is very much more
marked. This trend is continued in figure 14(e, f ) and we observe that for rs = 16,
a = 12 the growth rates of the axisymmetric modes can be up to fifty times those
relating to the n = 1 disturbances.
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Figure 15 presents the results of a few calculations aimed at investigating the role
played by larger azimuthal wavenumbers n. Comparing figure 15(a ,b) with figure
14(a ,b) we conclude, at least when rs = 1, that modes with n = 1 are potentially more
dangerous than their n = 2 counterparts when the cone radius is reasonably small.
However, as a increases, so the relative importances of the n = 1 and n = 2 modes is
exchanged; see figures 14(b) and 15(b) pertaining to a = 0.75. When the shock moves
further from the cone, it appears that n = 2 modes always have larger amplification
rates than the n = 1 disturbances; cf. figures 14(c,d ) and 15(c,d ). Indeed, for all the
values of a tested with rs = 16 we found that n = 2 modes typically have enhanced
growth rates when compared to the corresponding n = 1 results; cf. figures 14(e, f )
and 15(e, f ).

We conclude this brief account of spatially unstable modes by examining the
dependences of the maximum spatial growth rates as functions of cone radius a
for various azimuthal wavenumbers n. Figure 16 shows the forms of the n = 0, 1, 2
amplification factors for shock positions rs = 1, 4 and 16 respectively. First, it should
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Figure 16. Maximum spatial growth-rate parameters −αi as functions of the local cone radius a/rs
for shock positions rs = 1, 4, 16. Shown in each case are the results for the n = 0, 1, 2 modes.

be remarked that the slight crudeness of the figure is entirely a consequence of the
difficulty of the computation. For each selected set of rs, a and n it was necessary to
calculate a whole family of modes as functions of Ω, of the type shown in any of
figures 13–15, and then identify the most unstable of these. This lengthy calculation
yields just one point on one line in figure 16 and resource constraints made calculation
of numerous points on each line infeasible. That having been said though, there is
enough information for us to draw some general conclusions. It appears that the
behaviour of the axisymmetric modes is largely independent of rs in as much that
maximal spatial amplification rates grow with a. Unsurprisingly, overall growth rates
reduce as the shock moves away from the cone (rs →∞).

The influence of the shock appears to be much more dramatic for the non-
axisymmetric disturbances. Figure 16 proves that for a shock well away from the
cone the n 6= 0 modes have very small growth rates and that it is the axisymmetric
mode that may be expected to dominate the flow characteristics, at least for a wide
range of cone radii. As a→ rs, so that the shock nears the cone surface, growth rates
tend to rise but, at least when rs = 16, the axisymmetric mode seems to retain its
prominence. Figure 16 suggests that for lesser rs it is not the axisymmetric mode which
is the most important and the closeness of the shock to the cone has a significant
effect on the non-axisymmetric disturbances. From the results presented in figure 16
for non-axisymmetric modes it appears that there is no general trend of how the
maximum amplification behaves as a increases. For the choice rs = 1, it appears that
the n = 2 modes have the largest growth rates. It is eminently plausible that as rs
shrinks so the azimuthal wavenumber of the most strongly amplified mode grows.
However, in assessing the relative importance of the various modes for any particular
flow it has to be remembered that the viscous disturbances examined here are most
likely to be triggered by roughness on the surface of the cone. The exact form of
this roughness and, in particular, its azimuthal distribution, is likely to preferentially
excite certain modes. Thus although it is certainly useful to know the form of the
maximum spatial growth rates of each mode as functions of cone radius, it is less
certain whether comparison of growth rates for different n is of particular relevance.
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Nevertheless, we can briefly summarize our findings with the comments that for
axisymmetric modes the maximal growth rates increase with cone radius for fixed rs
and that whilst axisymmetric modes appear to be the most dangerous when the shock
is located in the outer reaches of the boundary layer, as rs reduces so the azimuthally
dependent modes assume an increasing prominence.

9. Discussion
In this study we have conducted a linear stability analysis of viscous modes in

flow past a slender cone. The solutions obtained have demonstrated that the effect of
the shock within the flow is significant and that the modes which could exist in the
absence of the shock are now almost totally destroyed. The influence of the shock is
always there, even in the limit rs →∞, unlike the planar case (see CH), and gives rise
to multiple modes; an explanation for this is related to the fact that the shock allows
incoming as well as outgoing waves.

We can now show that new viscous modes are indeed introduced even as rs →∞ by
returning to the axisymmetric dispersion relation (5.1). If rs is large, we scale α = ᾱ/rs,

a = ārs, Ω = r
−2/3
s Ω̄ so that we have

i−1/3Ai′(ξ̄0)∫ ∞
ξ̄0

Ai(ξ)dξ

= ᾱ4/3r−4/3
s

J0(ᾱ)Y0(ᾱā)− J0(ᾱā)Y0(ᾱ)

J0(ᾱ)Y1(ᾱā)− J1(ᾱā)Y0(ᾱ)
, (9.1)

where ξ̄0 = −i1/3Ω̄ᾱ−2/3. For neutral modes we have the usual result ξ̄0 ≈ 2.297i1/3

and so for both sides of (9.1) to be O(1) the denominator of the right-hand side
must vanish at leading order. Since Bessel functions oscillate as their (real) arguments
→∞, there is guaranteed to be a infinite family of solutions of

J0(ᾱ)Y1(ᾱā)− J1(ᾱā)Y0(ᾱ) = 0.

For example, if ā = 1
2
, then ᾱ = ᾱn = 3.59, 9.60, 15.82, . . .. If we write ᾱ = ᾱn +

r
−4/3
s α̂ then we can take Taylor expansions of the right-hand side of (9.1) to deduce
α̂. It is clear that we have found multiple solutions of (9.1) as rs → ∞ which
correspond to neutral waves. We can then safely conclude that there are non-neutral
solutions of our dispersion relation in the same limit and similar, though slightly more
complicated, arguments hold for the non-axisymmetric problem. We re-emphasize that
these multiple solutions are induced by the shock for in its absence this situation
cannot arise.

In reviewing the results of our investigations we highlight some of the more
significant findings. The neutral curves generated in §5 are in good agreement with
the asymptotic solutions discussed in §6 valid in the limits of small cone radius or
a → rs. Of interest is the observation that over much of the range 0 < a < rs the
calculated curves are remarkably well approximated by one or other of the simple
asymptotic forms. The non-neutral computations verify the expectation that the
overall spatial growth rates diminish as the shock moves away from the cone. What
may have been less predictable is that for large values of rs the maximal spatial growth
rates are usually associated with the axisymmetric modes and the non-axisymmetric
disturbances experience far weaker amplification. For shocks nearer the surface of
the cone the situation is more complicated and the two types of mode have similar
growth rates – which particular mode is then the fastest growing is dependent on the
exact values of a and rs.
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Figure 17. Scaled amplification rate −αi × 103 versus non-dimensional frequency F × 104 for
rs = 1, a = 0.9 and n = 2. Dashed line corresponds to experimental results of Stetson et al. (1983).

In view of advances in the aircraft and space industries, there appear to have
been few modern experiments directed towards investigating the stability of hyper-
sonic flows over axisymmetric bodies in general, and cones in particular. However
some numerical attacks on this problem appear to support many of our findings.
Tai & Kao (1994) report agreement between their Navier–Stokes solver and exper-
iments on high-speed flow past slender cones. Computations by Stilla (1994) and
Leung & Emanuel (1995) have also modelled this flow at M∞ = 8. Their work shows
that the stability of the flow is sensitive to the viscous–inviscid interaction zone
within the boundary layer and that proper resolution of the shock layer is crucial.
Interestingly, Stilla (1994) found that the use of different viscosity laws had a far
less dramatic effect on the results than might have been anticipated. (We noted ear-
lier that our analysis here is unaffected by choice of viscosity law.) Calculations by
Malik & Spall (1991) showed that in flow over axisymmetric bodies the transverse
curvature involved is a vital term in the stability equations; they remarked that there
are significant discrepancies between sharp-cone experiments and planar stability the-
ory. They also raised the possibility that non-parallelism might play some role in the
stability of the flow. This aspect has been reinforced by the linear stability analy-
sis of Stuckert & Reed (1994) for very high-speed flows at Mach 25. They included
chemical reaction terms in their formulation and used parabolized stability equations
combined with a shock fitting technique to investigate inviscid instabilities. In order
to achieve any agreement with experimental results, Stuckert & Reed (1994) noted
that inclusion of non-parallelism was essential.

An attempt was made to compare the current results with the growth rates mea-
sured by Stetson et al. (1983). This was achieved by taking the values of the Mach
number and (dimensional) temperature just behind the shock to be the corresponding
boundary-layer edge values of the experiments. The shock is not mentioned in the
description of the experiments. These quantities are required to calculate the length
and time scales of (3.1). The boundary-layer skin friction λ was taken to be 0.332
(the value for Chapman’s viscosity law) and the viscosity at the wall was evaluated
by using Sutherland’s law. The results of Stetson et al. (1983) for amplification rates
−αi × 103 versus non-dimensional frequency F × 104 are shown by the dashed curve
in figure 17 for M = 6.8 and Re = 2.99 × 106 with a wall temperature of 1155◦R
for a 7◦ half-angle cone (taken from figure 19 in their paper). Also shown are the
(appropriately scaled) results for rs = 1, a = 0.9 and n = 2 for the mode which gives
the maximum growth rate. It can be seen that the current disturbances occur for much
lower frequencies than those observed experimentally and have smaller amplification
rates. Thus, it appears that the shock has a dramatic effect on the instability of this
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flow. However, it must be recalled that our analysis has concentrated on viscous insta-
bility modes which are amenable to triple-deck description. One possible resolution
of the relatively poor agreement between our theoretical results and the experimental
findings is that Stetson et al. (1983) did not observe the viscous disturbances but some
other, possibly more rapidly growing, mode type. There is the obvious need to estab-
lish more information about the stability of axisymmetric hypersonic boundary-layer
flows before more reliable comparison of theory and experiment can be made.

In this work we have investigated parameter regimes in which non-parallelism is
negligible compared with the roles played by the shock and curvature. To extend our
study it would seem that inclusion of non-parallel effects would be desirable although
we note that this is yet to be done for the simpler problem of hypersonic flow past
a plane wedge. An asymptotic analysis of the inviscid stability of an axisymmetric
hypersonic flow would also be of interest. Extension of the present analysis into
nonlinear regimes would provide a challenging problem although we mention that
the framework laid here provides the starting point for a weakly nonlinear analysis;
this theory for the wedge flow may be found in Seddougui & Bassom (1994).

We are indebted to the referees who comments led to substantial improvements to
this article. Special thanks are due to the referee who encouraged us to undertake the
non-neutral work described in §§7,8.
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